Pharmacokinetics of an Injectable Modified-Release 2-Hydroxyflutamide Formulation in the Human Prostate Gland Using a Semiphysiologically Based Biopharmaceutical Model

Erik Sjögren,† Teuvo L. Tammela,‡ Bo Lennernäs,§ Kimmo Taari,∥ Taina Isotalo,¶ Lars-Ake Malmsten,‖ Niklas Axén,‖ and Hans Lennernäs§

†Department of Pharmacy, Uppsala University, SE-751 23 Uppsala, Sweden
‡Department of Urology, Tampere University Hospital, 33520 Tampere, Finland
§Department of Oncology, Göteborg University, 411 37 Gothenburg, Sweden
∥Department of Urology, Helsinki University Hospital and University of Helsinki, 00100 Helsinki, Finland
¶Department of Urology, Lahti Central Hospital, FIN-15101 Lahti, Finland
‖LIDDS AB, SE-252 20 Helsingborg, Sweden

ABSTRACT: The local distribution of 2-hydroxyflutamide (2-HOF) in prostate tissue after a single intraprostatic injection of a novel parenteral modified-release (MR) formulation in patients with localized prostate cancer was estimated using a semiphysiologically based biopharmaceutical model. Plasma concentration–time profiles for 2-HOF were acquired from a phase II study in 24 patients and the dissolution of the MR formulation was investigated in vitro. Human physiological values and the specific physicochemical properties of 2-HOF were obtained from the literature or calculated via established algorithms. A compartmental modeling approach was adopted for tissue and blood in the prostate gland, where the compartments were modeled as a series of concentric spherical shells contouring the centrally positioned depot formulation. Discrete fluid connections between the blood compartments were described by the representative flow of blood, whereas the mass transport of drug from tissue to tissue and tissue to blood was described by a one-dimensional diffusion approximation. An empirical dissolution approach was adopted for the release of 2-HOF from the formulation. The model adequately described the plasma concentration–time profiles of 2-HOF. Predictive simulations indicated that the local tissue concentration of 2-HOF within a distance of 5 mm from the depot formulation was approximately 40 times higher than that of unbound 2-HOF in plasma. The simulations also indicated that spreading the formulation throughout the prostate gland would expose more of the gland and increase the overall release rate of 2-HOF from the given dose. The increased release rate would initially increase the tissue and plasma concentrations but would also reduce the terminal half-life of 2-HOF in plasma. Finally, an in vitro–in vivo correlation of the release of 2-HOF from the parenteral MR formulation was established. This study shows that intraprostatic 2-HOF concentrations are significantly higher than systemic plasma concentrations and that increased distribution of 2-HOF throughout the gland, using strategic imaging-guided administration, is possible. This novel parenteral MR formulation, thus, facilitates good pharmacological effect while minimizing the risk of side effects.

KEYWORDS: prostate cancer, 2-hydroxyflutamide, Liproca Depot, physiological modeling, drug delivery

INTRODUCTION

Globally, almost one million men are diagnosed with prostate cancer (PC) each year, with about 275,000 dying as a consequence. Endogenous androgens, such as testosterone and its more potent metabolite dihydrotestosterone, are required for PC to advance and proliferate. PC is the second most common cause of death from cancer in men. Clinically, PC is 80–90% diagnosed as a local disease. In a recent population-based cohort study of 45,440 Californian men with clinically localized PC, the most common primary treatment was surgery (40%), followed by radiotherapy (29%), conservative management (21%), and androgen deprivation therapy (ADT) (9.8%). Patients who undergo prostatectomy or radiotherapy risk associated morbidity, and nearly 75% of all American men treated with either or both of these methods experience a biochemical recurrence, that is, increasing concentrations of prostate specific antigen (PSA). In the Californian study, neoadjuvant ADT was administered significantly more often to men who received primary radiotherapy (40.8%) than to those treated with surgery (13.1%). Neoadjuvant ADT is known to improve survival in patients receiving radiation therapy for PC. However, systemic use of...
primary ADT or oral antiandrogen treatment in patients with
low-risk PC has not increased survival because of increased
mortality from cardiovascular events.6–9 Extensive side effects,
such as metabolic syndrome, increased incidence of cardiovas-
cular events, osteoporosis, sexual dysfunction, and gynecomas-
tia, have been reported.10 An effective local hormonal treatment
with an improved side effect profile would be a welcome
alternative to active surveillance and systemic ADT for patients
with low-risk PC.

The injection of a modified-release (MR) formulation
directly into the prostate gland is an attractive treatment
approach that could improve efficacy and safety outcomes
compared to systemic ADT treatments.11 A novel parenteral
MR formulation containing the antiandrogen 2-hydroxyflutamide
(2-HOF) has been investigated in several preclinical and clinical
studies.12 The formulation contains a calcium sulfate drug carrier
that has been modified at a microstructural level to make it
bioreabsorbable and 2-HOF as the active pharmaceutical ingredient
(API). 2-HOF is the pharmacologically active main metabolite of
the androgen receptor antagonist flutamide.13 After intraprostatic
administration of this parenteral MR formulation into one lobe
of the gland, systemic and local spatiotemporal exposure to
2-HOF will be determined by the rate of in vivo release from the
depot along with (patho)physiological aspects such as membrane
transport, tissue binding, blood flow, and metabolism. In both
healthy and tumor-affected prostate tissue, drug disposition is
determined by the rate and extent of transport through the
vascular space and across the microvessels walls and diffusion
through the tissue interstitium.14 Physiologically based Pharma-
cokinetic and biopharmaceutical modeling is a suitable method
for investigating drug disposition in complex and multiparameter
in vivo systems.15

The primary objective of this investigation was to estimate
the local distribution of 2-HOF from this novel MR intra-
prostatic formulation by developing a semiphysiologically based
biopharmaceutical (PBBP) model. This model is designed to
provide concentration–time profiles for 2-HOF in plasma
and prostate tissue (PT). In addition, the intention was to use
this model to perform predictive simulations of the effects of
dose escalation, degeneration of blood vessels (angiogenesis) and
dissemination of the formulation through the prostate gland (i.e., developing an administration strategy).

Finally, we wished to establish the in vitro–in vivo correlation
(IVIVC) for the release of 2-HOF from the investigated MR
formulation.

MATERIALS AND METHODS

Description of the Study Product: Liproca Depot.

Liproca Depot is a parenteral MR product comprising two
sterile components: an aqueous solution of 0.25% sodium
carboxy methylcellulose (Liproca Diluent CMC, 4.0 mL) in a
glass vial and a dry powder (Liproca Powder, 40.0 g), consisting
of microstructurally modified calcium sulfate and the API
2-HOF in a specially designed syringe equipped with a mixing
unit. Prior to administration, the diluents and the powder are
mixed to a paste under aseptic conditions, and the paste is
administered into the prostate gland under ultrasonic guidance.

After injection of the paste, the formulation solidifies in vivo to
form multiple small depot units in the prostate gland tissue
from which 2-HOF is released as the carrier material slowly
dissolves and disappears. These small, cured depot units have a
two-phase microstructure comprising dense, compressed,
nonporous (slow release) grains in a porous, noncompressed
(faster release) matrix (Figure 1). Both MR phases contain
2-HOF. The porous grains contain 57% of the total 2-HOF
content and the nonporous grains contain 43%. The porous
and nonporous fractions are designed to release 2-HOF during
approximately 2–3 and 16–20 weeks, respectively. Import-
antly, the calcium sulfate in this formulation is radiopaque,
which facilitates the accurate transrectal ultrasound (TRUS)-
guided administration of the formulation into the prostate
gland.

In Vitro Release of 2-HOF from the Depot Formulation. The solid and liquid components, Liproca Diluent CMC
and Liproca Powder, were mixed to formulate the injectable
paste. Four depot units, each weighing 0.3 g, were cured in air
each unit was placed in a beaker containing 300 mL of 0.9% NaCl. The in vitro dissolution test was performed over 147
21 weeks (147 days); samples of size 20 mL were withdrawn
from the dissolution medium at designated time points. An 135
equivalent volume of fresh dissolution medium was added
to the beaker after each sampling and subsequent 2-HOF
concentration measurements were adjusted accordingly. The 139
dissolution medium was not stirred continuously, as this would 140
not reflect the physiological and hydrodynamic environment
of either the benign/malign tumor tissue or healthy PT. 142
However, before each sampling, the in vitro medium was 143
carefully and adequately stirred by gentle agitation to ensure 144
equilibrium.

**Clinical Study Design and Preparation of the Formu-
lation in the Clinic.** Plasma 2-HOF concentration–time
profiles were obtained from an open, multicenter, clinical 147
phase II study in 24 patients with localized PC (T1-T2).16 The 148
patients were monitored for 12 weeks (84 days) after a single 150
individualized dose of Liproca Depot into one lobe of the 151
prostate gland. The mean volume of the formulation injected 152
was 3.6 mL (range 2.0–7.8 mL), corresponding to a mean 153
2-HOF dose of 720 mg (range 400–1560 mg). Liproca Depot 154
was prepared under aseptic conditions via two consecutive 155
mixing steps. First, 3.3 mL of the Liproca Diluent CMC was 156
withdrawn from the vial and transferred to the Liproca Powder 157
syringe (already loaded with 40.0 g of powder). The two 158
components were thoroughly mixed in the powder syringe to 159
form a paste. The prepared paste was then transferred to the 160
original diluent syringe mounted onto the specially designed 161

Figure 1. Electron microscopy image of the microstructure by a cross section of the solidified formulation showing dense nonporous granules in the porous matrix.
injection applicator. When the applicator needle was positioned in the selected part of the prostate gland using standard TRUS guidance, the paste was injected while simultaneously slowly withdrawing the needle from the distal starting point in the gland. The administration and distribution of the dose was continuously monitored with the ultrasound equipment. The mean prostate volume in the patient group, measured with the same TRUS equipment, was 48.1 mL. This value was used in the semi-PBPP model.

Plasma samples for the pharmacokinetic (PK) assessment of 2-HOF were taken on the day of injection (preinjection and 2, 4, and 6 h post injection) and after 1, 4, 8, and 12 weeks. The blood samples were centrifuged (at 1000g) for 15 min and immediately frozen as plasma at −20°C. The plasma samples were transferred deep-frozen to Statens Veterinarmedicinska Anstalt (SVA, Uppsala, Sweden) for analysis.

Analytical Methods for Determining 2-HOF Concentrations. The method for quantitative determination of 2-HOF concentrations in human plasma using liquid chromatography coupled to tandem mass spectrometry (LC–MS/MS) was developed and validated at SVA (Uppsala, Sweden). The analysis was carried out by LC–MS/MS with negative electrospray ionization [LC Mass spectrometer: TSQ Quantum Ultra (inv. no: 241); TSQ Quantum 1.4; Surveyor MS, Pump 1.01.3300]. The data acquisition mode was set to Selected Reaction Monitoring. The results were calibrated using the chromatographic peak area ratio (analyte/internal standard 2H6-hydroxy-flutamide) as a function of the 2-HOF plasma concentration. Tuning was performed on sensitivity optimization for the SRM transition m/z 291 → 205 for 2-HOF [M-H]−.

The plasma samples were prepared by alkaline liquid–liquid extraction, followed by isolation and evaporation of the organic phase and reconstitution of the sample. A total of 500 μL of plasma, 200 μL of water, and 500 μL of 1.0 M sodium carbonate were mixed with each sample and 4.0 mL of hexane/dichloromethane (4:1) was added. The mixture was shaken in a vortex mixer for 3 min (1650 pulse) and then centrifuged at 3500g for 10 min. The organic phase was collected and evaporated to dryness under a gentle stream of nitrogen at 35°C. The resulting reconstituted mixture was vortexed for 10 s, and the reconstituted sample was transferred deep-frozen to the surrounding tissue. The plasma samples were prepared by alkaline liquid–liquid extraction, followed by isolation and evaporation of the organic phase and reconstitution of the sample. A total of 500 μL of plasma, 200 μL of water, and 500 μL of 1.0 M sodium carbonate were mixed with each sample and 4.0 mL of hexane/dichloromethane (4:1) was added. The mixture was shaken in a mixture for 3 min (1650 pulse) and then centrifuged at 3500g for 10 min. The organic phase was collected and evaporated to dryness under a gentle stream of nitrogen at 35°C. The resulting reconstituted mixture was vortexed for 10 s, and the reconstituted sample was transferred deep-frozen to the surrounding tissue. The plasma samples were prepared by alkaline liquid–liquid extraction, followed by isolation and evaporation of the organic phase and reconstitution of the sample. A total of 500 μL of plasma, 200 μL of water, and 500 μL of 1.0 M sodium carbonate were mixed with each sample and 4.0 mL of hexane/dichloromethane (4:1) was added. The mixture was shaken in a mixture for 3 min (1650 pulse) and then centrifuged at 3500g for 10 min. The organic phase was collected and evaporated to dryness under a gentle stream of nitrogen at 35°C. The resulting reconstituted mixture was vortexed for 10 s, and the reconstituted sample was transferred deep-frozen to the surrounding tissue. The plasma samples were prepared by alkaline liquid–liquid extraction, followed by isolation and evaporation of the organic phase and reconstitution of the sample. A total of 500 μL of plasma, 200 μL of water, and 500 μL of 1.0 M sodium carbonate were mixed with each sample and 4.0 mL of hexane/dichloromethane (4:1) was added. The mixture was shaken in a mixture for 3 min (1650 pulse) and then centrifuged at 3500g for 10 min. The organic phase was collected and evaporated to dryness under a gentle stream of nitrogen at 35°C. The resulting reconstituted mixture was vortexed for 10 s, and the reconstituted sample was transferred deep-frozen to the surrounding tissue.

Theoretical Explanation of the Release of 2-HOF from the Depot Formulation. The release of a drug from a pharmaceutical formulation is traditionally regarded to be limited by either the diffusion rate or the dissolution rate and several theoretical analytical solutions to a wide range of formulations have been proposed. An empirical approach was deployed in this study in order to develop a model that explained the complete release of 2-HOF from the investigated MR formulation where the drug release was determined by the composition and characteristics of the formulation. This approach was based on the Noyes–Whitney Equation (eq 1)

\[
\frac{dW}{dt} = \frac{DAΔC}{L} \quad (1)
\]

where the rate of movement of the drug (weight W) from the solid depot to solution (dW/dt) was determined by the surface area of the formulation (A), the diffusion constant of the drug (D), the difference in concentration between the surface and the bulk of the depot (ΔC) and the thickness of the diffusion layer (L).

Assuming that the MR formulation forms one or several perfect sphere(s) that shrink symmetrically throughout the dissolution process and that the volume of the MR formulation is related to the amount of 2-HOF in the formulation, A is proportional to \(W^{2/3} \). Assuming further that the release of 2-HOF from the drug depot is determined by the dissolution of the formulation and not by \(D, ΔC \) or \(L \), these parameters can be substituted by a release rate constant (k). Under these assumptions, the Noyes–Whitney equation was reformulated as eq 2

\[
\frac{dW}{dt} = kW^{2/3} \quad (2)
\]

Similar reformulations of the Noyes–Whitney equation have been reported previously for different applications.

Modeling. In Vitro Release of 2-HOF from the Depot Formulation. It appears reasonable to assume that 2-HOF is primarily released from this formulation via two different mechanisms: one represented by the fraction of 2-HOF that is incorporated and bound into the formulation matrix, the release of which is therefore dependent on wetting and dissolution/porosity of the formulation; and the other represented by the fraction of 2-HOF that is released from the nonporous part of the formulation. The total release rate was thus described as the sum of two discrete and simultaneous release mechanisms (eq 3).

\[
\frac{dW_{tot}}{dt} = \frac{dW_{p}}{dt} + \frac{dW_{np}}{dt} = kW_{p}^{2/3} + kW_{np}^{2/3} \quad (3)
\]

where the subscripts \(p \) and \(np \) refer to total, porous and nonporous (dense), respectively.

The porous and nonporous formulation components were allocated 57% and 43% of the total amount of 2-HOF, respectively, to represent the composition of the formulation.

A common feature of parenteral depot formulations is an initial unintended burst of readily available API on the outer surfaces of the formulation, which are in direct contact with the surrounding tissue fluids. This initial release was kept as low as possible in this MR formulation, but the extent of the fraction released was nonetheless investigated by modeling the porous part as incorporating two separate release processes, giving a total of three simultaneous release mechanisms, described by eq 4

\[
\frac{dW_{tot}}{dt} = \frac{dW_{p-ub}}{dt} + \frac{dW_{p-b}}{dt} + \frac{dW_{np}}{dt} = kW_{p-ub}^{2/3} + kW_{p-b}^{2/3} + kW_{np}^{2/3} \quad (4)
\]

where the subscripts \(p-ub \) and \(p-b \) refer to unbound drug in the porous compartment (readily available at the surfaces, i.e., the burst dose) and bound drug in the porous compartment (enclosed in the matrix), respectively.

In Vivo Release of 2-HOF from the Depot Formulation. The in vivo analysis was carried out using the most promising release model from analysis of the in vitro data. However, as the in vivo solidification process occurs under moist conditions within the prostate gland, in contrast to the in vitro experiments where the formulation was cured in normal air, it was hypothesized that the in vivo release pattern might be somewhat different from the in vitro pattern. The presence of tissue and...
tissue fluids could affect both the porosity and the surface of the formulation. As a consequence, the in vivo release model was described by in vivo-specific parameters, whereas the release model structure was in accordance with the conclusions from the in vitro analysis.

Physiological Modeling of Intraprostatic Drug Delivery. Semi-PBBP Model Structure A. The prostatic gland in the semi-PBBP model was constructed of six tissue and six blood compartments with discrete connections between compartments, as displayed in Figure 2A. Each compartment was allocated an appropriate physiological volume to convert the amount of 2-HOF in the compartment to a corresponding concentration. The rate of the mass transport of 2-HOF from and to the depot was then calculated on the basis of the thickness of the shells. The volume of blood within the human prostate gland was assumed to be 1.5% of the total volume of the prostate and was calculated as 0.72 mL. The volume of the PT was not corrected accordingly, as the volume of blood was assumed negligible. The overall rate of prostatic blood flow (67 mL min⁻¹) and the vascular area (3230 cm²) were calculated by adopting a blood perfusion rate of 0.97 mL min⁻¹ per mL of tissue and a vascular surface density of 67 cm² mL⁻¹. The volume of the PT was 0.72 mL. The thickness of the shells. The volume of blood within the prostate compartment, the rate of perfusion, and the surface density of 67 cm² mL⁻¹ were then calculated from the volume fraction of each prostate compartment. The product of permeability and surface area is similar for estimates in tumors and normal tissue because the reduced vessel surface area in high-grade cancers is compensated for by increased blood flow and vessel wall permeability. The volumes of the tumors are also usually low (<1 mL or 5-10% of the total prostate volume) at this stage of localized prostate cancer, justifying the assumption that the local disposition kinetics of 2-HOF are mainly affected by nontumor tissue. The physiological data for the PT used in the semi-PBBP model A are summarized in Table 1.

Diffusion Drug Clearances. The description of the flux of 2-HOF in the prostate was based on a multicellular layer diffusion coefficient (D_MCL). The D_MCL for 2-HOF was estimated as

\[
\log(D_{MCL}) = C - \frac{[\text{dlog}(M_c)]}{f(\log P)}
\]

Figure 2. (A) Schematic representation of the semiphysiologically based biopharmaceutical (PBBP) model developed to describe the prostatic tissue disposition and plasma concentrations of 2-HOF. The compartmental depiction includes prostatic tissue (PT), the prostate vascular compartments (PV), the central PK compartment (i.e., systemic blood), and the connections between compartments indicated by arrows. (B) Schematic depiction of the prostatic tissue shell approximation model used in the semi-PBBP model. The PT compartments are numbered 1 to 6. Data such as volumes and distances within the prostate, input into the semi-PBBP model, were estimated based on this model approach.

Table 1. Physiological Data for the Prostate Used in the Semi-Physiologically Based Biopharmaceutical Model

<table>
<thead>
<tr>
<th>prostate compartment</th>
<th>ShTh (cm)</th>
<th>PLd (cm)</th>
<th>PLs (cm)</th>
<th>PV (ml)</th>
<th>PAr (cm²)</th>
<th>PBV (ml)</th>
<th>PBQ (ml min⁻¹)</th>
<th>PBAr (cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>0.20</td>
<td>0.10</td>
<td>0.20</td>
<td>2.8</td>
<td>17</td>
<td>0.053</td>
<td>3.9</td>
<td>190</td>
</tr>
<tr>
<td>P2</td>
<td>0.20</td>
<td>0.30</td>
<td>0.20</td>
<td>3.9</td>
<td>23</td>
<td>0.075</td>
<td>5.5</td>
<td>260</td>
</tr>
<tr>
<td>P3</td>
<td>0.20</td>
<td>0.50</td>
<td>0.20</td>
<td>5.3</td>
<td>30</td>
<td>0.10</td>
<td>7.3</td>
<td>350</td>
</tr>
<tr>
<td>P4</td>
<td>0.20</td>
<td>0.70</td>
<td>0.20</td>
<td>6.8</td>
<td>39</td>
<td>0.13</td>
<td>9.5</td>
<td>460</td>
</tr>
<tr>
<td>P5</td>
<td>0.20</td>
<td>0.90</td>
<td>0.28</td>
<td>8.6</td>
<td>48</td>
<td>0.16</td>
<td>12</td>
<td>580</td>
</tr>
<tr>
<td>P6</td>
<td>0.36</td>
<td>1.2</td>
<td>21</td>
<td>67</td>
<td>0.39</td>
<td>29</td>
<td>1400</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>1.4</td>
<td>48</td>
<td></td>
<td>67</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: ShTh = the thickness of the prostate tissue compartment shell, PV = the volume of the prostate tissue compartment. PAr = the area of the prostate tissue compartment, PLd = the mean distance from the prostate tissue compartment to the depot, PBV = the volume of the prostate blood compartment, PBQ = the rate of blood flow in the prostate blood compartment, and PBAr = the area of the prostate blood compartment.
where
\[
f(\log P) = \frac{\alpha}{1 + e^{-(\log P - \beta)/\gamma}}
\]
and where \(P \) is the octanol–water partition coefficient, \(\alpha \) is the molar mass (292.1 g mol\(^{-1}\)), \(C = -5.6, \alpha = 0.5, \alpha = 1.2, \beta = 0.7, \gamma = 0.6 \). Log \(P \) was estimated as 2.1 using ALOGPS2.1 based on the chemical structure of 2-HOF, described by the simplified molecular-input line-entry system (SMILES: \(CC(\equiv=O)NC1=CC(=C\equivC(C1)(\equivN)[=O](\equivO)^{-})* \)).

The flux of 2-HOF between the prostate compartments was then modeled using a one-dimensional diffusion approximation, expressed by the diffusion clearance (CL\(_D\)) parameter. CL\(_D\) was calculated from eq 6 using the estimated \(D_{MCL} \), the mean distance between the compartments (PL), and the area over which the mass transport took place (\(A_r \)).

\[
CL_D = \frac{Ar \times D_{MCL}}{PL}
\]

The values for \(Ar \) and \(L \) that were used to calculate CL\(_D\) between the tissues are listed in Table 1. The CL\(_D\) of 2-HOF between the PT and blood compartments was calculated using the vessel surface area and the distance to the blood compartment, arranged so that each blood compartment was centralized in each PT compartment, giving a distance of half the general tissue shell thickness (0.1 cm). This approach is justified by the similarities between normal and tumor tissues regarding the product of permeability and surface area. The transmembrane transport mechanism was assumed to be dominated by passive diffusion for this rather small, lipophilic drug molecule (\(M_{\text{ine}} = 292.1, \log P = 2.1, \text{PSA} = 75 \)). The CL\(_D\) values used for the flux of 2-HOF in PT in the semi-PBBP model are summarized in Table 2.

A one-compartment model including volume of distribution (\(V_d \)) and systemic elimination clearance (CL\(_{\text{elim}} \)) was used to describe the PK of 2-HOF in plasma. The \(V_d \) (expressed in mL) of 2-HOF in humans was estimated from previous in-house preclinical intravenous studies in rat (2100 mL/kg, weight 350 g) and dog (1800 mL/kg, weight 30 kg), using eq 7 and allometric scaling.

\[
\log(V_d) = 0.07714\log(V_{d,\text{rat}})\log(V_{d,\text{dog}}) + 0.5147\log(V_{d,\text{dog}}) + 0.5860
\]

For the simulations of 2-HOF PK after oral administration, an intestinal absorption rate (\(f_{\text{int}} \)) into the central compartment was modeled as a first-order process described by an absorption rate constant that was set at 0.693 h\(^{-1}\), representing an absorption half-life of 1 h.

The average plasma concentration (\(C_{\text{ss,av}} \)) following oral administration of 250 mg three times daily (TID) was calculated using eq 8

\[
C_{\text{ss,av}} = \frac{F \times \text{dose}}{CL_{\text{elim}} \times \tau}
\]

where \(F \) is the bioavailability and \(\tau \) is the dosage interval. The fractions of unbound 2-HOF in plasma (\(f_u \)) and prostate tissue were set as 0.05 and 1, respectively.

Mass Transport Equations Implemented in the Semi-PBBP Model for Intraprostatic Drug Delivery. The following basic assumptions were used in this study: (i) that each compartment was well stirred, i.e. there were no concentration gradients within any of the compartments; (ii) that there was instant equilibration within each compartment, and that the concentrations of unbound 2-HOF were the same in the tissue and blood compartments; (iii) that only free (unbound to e.g. plasma protein) drug was allowed to transit between compartments; and (iv) that the concentrations in the target tissue were pharmacologically relevant.

Model Structure. The concentration of 2-HOF in the prostate tissue compartment adjacent to the MR formulation (PT1) was described by eq 9

\[
dC_{PT1} \over dt = \frac{(CL_{DPT1} \times (C_{PT2} - C_{PT1})) + (CL_{D&PPT1} \times ((C_{PT1} \times fu_p) - C_{PT1})) + v_{\text{release}}}{V_{PT1}}
\]

rate of drug release from the depot. The subscript \(b \) denotes the blood compartment.

The concentration of 2-HOF in prostate tissue compartments two to five (PT2-PTS) was described by eq 10

\[
dC_{PTn} \over dt = \frac{(CL_{DPTn+1} \times (C_{PTn+1} - C_{PTn})) + (CL_{Dn-1} \times (C_{PTn-1} - C_{PTn})) + (CL_{D&PPTn} \times ((C_{PT1} \times fu_p) - C_{PT1}))}{V_{PTn}}
\]

diffusion clearance back to the previous prostate compartment, CL\(_{D&PPTn}\) is the diffusion clearance to the connected prostate blood

Table 2. Diffusion Clearances, CL\(_D\), Used in the Semi-PBBP Model to Represent the Flux of 2-HOF in the Prostate

<table>
<thead>
<tr>
<th>prostate compartment</th>
<th>(CL_{DPT1}) (ml min(^{-1})) \times 10(^3)</th>
<th>(CL_{DPTn}) (ml min(^{-1})) \times 10(^3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100</td>
<td>9.1</td>
</tr>
<tr>
<td>2</td>
<td>140</td>
<td>13</td>
</tr>
<tr>
<td>3</td>
<td>190</td>
<td>17</td>
</tr>
<tr>
<td>4</td>
<td>250</td>
<td>21</td>
</tr>
<tr>
<td>5</td>
<td>320</td>
<td>19</td>
</tr>
<tr>
<td>6</td>
<td>760</td>
<td>60</td>
</tr>
</tbody>
</table>
The concentration of 2-HOF in the central compartment was described by eq 11:

\[
\frac{dC_{PT6}}{dt} = \frac{(CL_{DN} \times (C_{PT6} - C_{PTn})) + (CL_{DNPT6} \times ((C_{PT6} \times fu) - C_{PT6}))}{V_{PT6}}
\]

(11)

The concentration of 2-HOF in prostate blood compartment \(n\) was modeled by eq 12:

\[
\frac{dC_{bPTn}}{dt} = \frac{(CL_{DNPTn} \times (C_{bPTn} - (C_{bPTn} \times fu_n))) + (Q_{PTn} \times (C_{central} - C_{bPTn}))}{V_{bPTn}}
\]

(12)

where \(C_{bPTn}\) is the concentration of 2-HOF in prostate blood compartment \(n\), \(Q\) is the rate of blood flow, \(CL_{DNPT}\) is the diffusion clearance to the connected prostate blood compartment (\(bPT6\)).

\[
\frac{dC_{central}}{dt} = \sum (Q_{bPTn} \times (C_{bPTn} - C_{central})) - (CL_{elim} \times C_{central}) + \frac{v_{abs}}{V_d}
\]

(13)

Parameter Estimations. In Vitro Release of 2-HOF from the Depot Formulation. The drug release-related parameters were estimated by fitting the experimental in vitro release-time profiles to the models described in eqs 3 and 4. The main parameters estimated were the release-rate constants \(Q\) and \(k\). The release model that included a third release mechanism (eq 4) was also used to estimate the fractions of 2-HOF allocated to the porous-unbound and porous-bound parts. The sum of these two fractions was always 57% of the total 2-HOF content.

In Vivo Release of 2-HOF from the Injected Depot Formulation. The mechanisms of the release of 2-HOF from the depot in vivo and the CL\(_{elim}\) were estimated using model structure B by fitting the concentration in the plasma compartment to the observed plasma concentration–time profile. The mean dose of 2-HOF administered as Liproca Depot into one lobe of the peripheral zone in the clinical study (720 mg) was used in the estimations.

Simulations. Sensitivity to Estimated Parameters. Sensitivity simulations were carried out using the model structure B to evaluate the impact of each estimated parameter on the plasma concentration–time profile. Thus, the estimated values of \(k\), CL\(_{elim}\), and fraction of \(W\) allocated to the unbound and bound fractions of the porous part of the composition were varied and the impact on the result was observed. The impact of a 2-fold reduction and increase in release constants for the bound porous and nonporous material, respectively, and CL\(_{elim}\) were investigated. Also, the estimated fraction allocated to the readily available (unbound) fraction of the porous granules, that is, the unintended burst dose, was investigated at a value of 50%.
In Vivo Correlation. The rate of drug release in vitro was correlated with that in vivo by relating the normalized release constants for each component in the formulation, that is, porous and nonporous. The constants were normalized to the cubic root of the initial amount of 2-HOF ($W^{1/3}$) to acquire mass-normalized rate constants ($k/W^{1/3}$) with units day$^{-1}$. The mass-normalized rate constants were compared in the IVIVC. The amounts and rate constants related to respective mechanisms, that is, porous and nonporous, were acquired from the in vitro and in vivo analyses. The IVIVC was also simulated using model structure B and scaled in vitro release parameters for an intraprostatic 2-HOF dose of 720 mg as Liproca Depot.

Data Analysis. Akaikes information criterion (AIC), sum of squared residuals (SSR), visual examination, and the precision of parameter estimation were investigated to evaluate and compare the goodness of fit for the different models. All analyses of kinetic data were performed (weighted 1/y^2) using WinNonlin Professional software V6.3 (Pharsight Corp., CA). Simulations were performed with Berkeley Madonna software v8.3.18 (University of California, Berkeley, CA, U. S. A.).

RESULTS

In Vivo Release of 2-HOF. The results from the in vitro investigation are summarized in Table 3. Observations from the in vitro experiment and simulated model curve corresponding to the two-phase release and the three-phase release models are shown in Figure 3. The model with three simultaneous release mechanisms described the in vitro release significantly better than the two-phase model (two-phase AIC = 1650, SSR = 79.3, 3.3 × 108; three-phase AIC = −302, SSR = 0.35 × 108). The estimated in vitro release rate constants were: $k_{p-b} = 3.2 \, \mu g^{1/3} \, day^{-1}$, $k_{p-b} = 0.57 \, \mu g^{1/3} \, day^{-1}$, and $k_{np} = 0.35 \, \mu g^{1/3} \, day^{-1}$. The model readily available fraction, that is, the unbound burst dose of 583 2-HOF from the porous part of the MR formulation, was estimated to be 24% of the total dose with the three-phase 585 model in vitro.

In Vivo Release of 2-HOF. Depot release and description of plasma concentration–time profile for 2-HOF. There was a high correlation between the plasma compartment kinetics and the observed plasma concentration–time profiles for 2-HOF, fitting the three-component (eq 4) release model, based on the in vitro investigation for drug release from the depot (Figure 4). In vivo release parameters are listed in Table 4. The estimated in vivo release rate constants were: $k_{p-b} = 15 \, \mu g^{1/3} \, day^{-1}$, $k_{p-b} = 949.7 \, \mu g^{1/3} \, day^{-1}$, and $k_{np} = 1.7 \, \mu g^{1/3} \, day^{-1}$.

Table 3. Estimated Parameters, Release Rate Constants, and Amounts of 2-HOF As Percent of the Dose Related to Each Release Process, for Modeling the in Vitro Release of 2-HOF from Liproca Depot

<table>
<thead>
<tr>
<th>release component</th>
<th>two-phase model (eq 3)</th>
<th>three-phase model (eq 4)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>% of amount</td>
<td>$k , (\mu g^{1/3} , day^{-1})$</td>
</tr>
<tr>
<td>nonporous</td>
<td>43</td>
<td>0.30 (3.3)</td>
</tr>
<tr>
<td>porousa</td>
<td>57</td>
<td>1.25 (3.3)</td>
</tr>
<tr>
<td>porous unbounda</td>
<td>24 (3.6)</td>
<td>3.2 (2.0)</td>
</tr>
<tr>
<td>model performance</td>
<td>AIC = 1650, SSR = 3.3 × 108</td>
<td></td>
</tr>
</tbody>
</table>

"For the two-phase analysis, rate constants were estimated and the percentage of the dose in each release component was based on the composition of the formulation. Release rate constants, in units $\mu g^{1/3} \, day^{-1}$, are also displayed normalized to amount$^{1/3}$, unit day$^{-1}$. Estimated values are presented with CV% within brackets. aAdopted in the 2-phase model (eq 3). bAdopted in the 3-phase model (eq 4).
Simulations. Sensitivity Simulations. The results from the sensitivity simulations, using changes to the estimated parameters from the in vivo analysis, are presented in Figure 5. The terminal half-life of 2-HOF in plasma was dependent on its rate of release from the dense nonporous granules, whereas the area under the plasma concentration—time curve (exposure, AUC) for 2-HOF was also dependent on CL_{clim}. The initial (0—2 days) increase in plasma concentrations was partly determined by the fraction of unbound 2-HOF in the porous granules at 609 the exposed surfaces. However, in relation to the two main release components, the fraction of unbound 2-HOF in the porous granules, that is, unintended burst part, had negligible influence on the overall plasma profile. The initial (0—2 days) and midperiod (2—20 days) plasma profiles were dominated by the porous composition, whereas the extended profile (20—92 days) was determined by the dense material in the depot formulation.

Prostate Tissue Concentration and Tissue Penetration of 2-HOF. The penetration of 2-HOF in the PT following a single dose of the parenteral MR formulation was simulated using model structure A. The model was capable of simulating the PT concentration (C_{PT}) in relation to the distance to the local depot over time (spatiotemporal) (Figure 6). The pseudo-equilibrium, the C_{PT}/C_{central} ratios for the PT compartments were as follows: PT1 39000 (1 mm), PT2 1200 (3 mm), PT3 36 (5 mm), PT4 2.1 (7 mm), PT5 1.0 (9 mm), and PT6 1.0 (12 mm). For the whole PT this was equivalent to an average C_{PT}/C_{central} ratio of 2400. This corresponds to a total 630% concentration of 2-HOF in PT that is 120 times higher than that in plasma. This demonstrates that the targeting and 632accumulation of 2-HOF is potentially significant over an area 633of 5 mm in each direction from the depot surface. Each discrete 634unit of the formulation will consequently affect a total axial 635length of 10 mm of tissue throughout the dosage interval. The 636tissue penetration of 2-HOF was dependent on the relationship 637between CL_{DPT} and CL_{DPT} as displayed in Figure 7. As CL_{D} is 638compartment-specific (dependent on area and length), the 639CL_{DPT}/CL_{DPT} ratio is given as a range. The simulated 640reduction of prostatic blood flow from 0.97 mL min^{-1} per mL PT to a healthy level, 0.34 mL min^{-1} per mL PT, had no impact on the PT tissue penetration or plasma concentration—time profile of 2-HOF.27-30

Impact of Dose and Dispersion of the MR Formulation on the Release and Plasma PK of 2-HOF. The predicted effects of 646variations in the dose and extent of dissemination of the MR 647formulation are shown in Figure 8. When the same parenteral 648dose was distributed further throughout the prostate gland, the 649total amount of released 2-HOF per time was increased because 650of the larger surface area available for drug release from the 651depot formulation. As a result, C_{max} in plasma and tissue increased and the terminal plasma half-life of 2-HOF was reduced. Increased distribution also increased the fraction of 654the PT that was close to the depot. For instance, when applying 655the geometry of a sphere, if the formulation is kept roughly as 656one unit (i.e., minimal dissemination), approximately 20% of 657the PT will be within 5 mm of the depot, which should easily cover the volume of most tumors of about 0.5—1 mL in this 659patient category.36 This percentage would theoretically increase to approximately 63% if the same volume of the formulation is divided into 8 units. This supports a dosage strategy that, with the assistance of modern imaging techniques, could provide highly precise tumor-directed therapy.

Table 4. Estimated Parameters for the in Vivo Release of 2-HOF from Liproca® Depot

<table>
<thead>
<tr>
<th>release component</th>
<th>% of amount</th>
<th>k (μg^{1/3} day^{-1})</th>
<th>k (day^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>nonporous</td>
<td>43</td>
<td>1.7</td>
<td>0.025</td>
</tr>
<tr>
<td>porous bound</td>
<td>54</td>
<td>7.9</td>
<td>0.11</td>
</tr>
<tr>
<td>porous unbound</td>
<td>3</td>
<td>15</td>
<td>0.54</td>
</tr>
</tbody>
</table>

“Release rate constants, in units of μg^{1/3} day^{-1}, are also displayed normalized to amount^{1/3} with the unit of day^{-1}.”
665 2-HOF Plasma Concentrations after Repeated Oral
666 Administration of Flutamide (250 mg TID). The simulated
667 plasma concentration–time profile for 2-HOF after 250 mg
668 oral flutamide TID (total daily dose of 750 mg for 5 days) is
669 shown in Figure 9. The calculated \(C_{\text{av,sys}} \) after oral admin-
670 istration was 1180 ng mL\(^{-1}\), which is similar to previously
671 reported 2-HOF concentrations after oral administration of
672 flutamide 250 mg TID (1629 ± 586 ng mL\(^{-1}\)).\(^{37}\) After oral
673 administration, the concentration of 2-HOF in the PT was
674 equivalent to the concentration of unbound 2-HOF in plasma
675 (i.e., the systemic concentration). The comparison between
676 simulated systemic plasma and prostate concentrations of
677 2-HOF following a local single dose of Liproca Depot (720,
678 1560, 2500, and 3500 mg) and repeated oral doses of flutamide
679 250 mg TID is shown in Figure 10.

In Vitro–In Vivo Correlations. The comparison of the
680 normalized release rate constants \((k/W^{1/3})\) acquired from in
681 vitro and in vivo analyses is shown in Table 5. Figure 11 shows
682 the simulated in vivo plasma concentration–time profile using
683 the estimated in vitro release parameters from the three-phase
684 release model, scaled to a clinical dose of 720 mg, using the
685 semi-PBBP model structure B, and PK parameters estimated
686 from the in vivo study. Although the simulated plasma profile
687 showed dissimilarities to the estimated plasma profile, especially
688 in the early to middle stages, it corresponded reasonably
689 well with observations. This was mainly a consequence of the
690 acceptable correlation acquired for the nonporous slow release
691 component in the formulation. Despite the discrepancies, this
692 comparison demonstrated that a reasonably accurate, direct
693 IVIVC is possible using the suggested release approach and in
694 vitro methodology. The results suggest that the applied in vitro
695 method and the theoretical approach for the release can be
696 used in assessing the clinical performance of this parenteral MR
697 formulation.
A semi-PBBP model was developed to investigate tissue concentrations and the spatiotemporal distribution of 2-HOF in the prostate gland after intraprostatic single-dose delivery of an MR formulation. The parenteral MR formulation was microstructurally designed to provide fast and slow rates of release of 2-HOF from the porous and dense nonporous parts of the formulation, respectively. In the model analysis, the in vivo release of 2-HOF agreed well with two-phase release characteristics. The semi-PBBP model was based on plasma concentration–time data for 2-HOF obtained from a phase II study in 24 patients with localized PC (T1-T2), in which a single mean dose of 720 mg 2-HOF in the depot formulation was injected by TRUS into one lobe of the prostate gland.16 Simulations using the semi-PBBP model produced realistic prostate concentration–time profiles and spatiotemporal distributions of 2-HOF in the PT. In addition, plasma PK profiles after oral administration were replicable. Finally, an IVIVC of the release rates of 2-HOF was partially established. The reformulated Noyes–Whitney equation (eq 1), which describes the direct correlation between the release rate and the amount of API in the dose, accurately described the in vitro drug release profile. The three-phase release model (eq 4), determined to be the most appropriate one from the in vitro investigation, was used to describe drug release in the PBBP model, which was then used to estimate the in vivo release rate. The IVIVC subsequently showed a reasonably good correlation for the nonporous (dense) slow release part of the formulation. No direct correlation was found between in vivo and in vitro results for release from the porous part (i.e., the estimated release rate constants and the fraction of unintended burst of unbound drug from the porous part were both different). There are several potential reasons for these discrepancies. One may be differences in the overall shape of the depot formulations in the in vitro and in vivo investigations. The in vitro study was performed with roughly hemispherical lumps of solidified formulation, with theoretically less available surface area than was diseminated across the prostate gland (see discussion below in relation to Figure 12). Another possible cause to the observed differences between the in vitro and in vivo characteristics.

Figure 7. Impact of the relationship between the tissue-to-blood (CL_{DBPT}) and tissue-to-tissue (CL_{DPT}) intraprostatic diffusion clearances on the 2-HOF prostate tissue (PT) concentrations. The graphs show the individual plasma concentration–time profiles for 2-HOF from the clinical study (connected black squares) and simulated concentration–time profiles for total (green) and unbound (blue) 2-HOF in the central compartment and for 2-HOF in the PT compartments (red) PT1 (dots), PT2 (squares), PT3 (triangles), PT4 (diamonds), at mean distances from the depot formulation of 1, 3, 5, and 7 mm, respectively. The concentrations in PT5 and PT6 were the same as the concentration of unbound 2-HOF in the systemic plasma and these values were thus excluded from the plots. For each setting, the 2-HOF tissue accumulation is also shown as the concentration in the PT (C_{PT}) divided by the concentration of unbound 2-HOF in the central compartment (C_{u,central}).

dx.doi.org/10.1021/mp5002813 | Mol. Pharmaceutics XXXX, XXX, XXX–XXX

Molecular Pharmaceutics
741is the interaction between the formulation and the surrounding media. This seems highly plausible, considering that the release of 2-HOF from the porous part was influenced more than from the compressed dense part, which is largely embedded in (and protected by) the surrounding porous matrix. In addition, the human prostate gland has a higher capacity to maintain local sink conditions and reduce the aqueous boundary layer surrounding the formulation than the more unstirred in vitro situation. The flow of biological fluids in the PT in vivo might also affect the formulation differently from the in vitro assay setup. The potential for disintegration of the porous part of the MR formulation is increased by the mechanical forces resulting from intraorgan fluid movements and tissue contractions. One month after it was administered by intraprostatic injection in a preclinical efficacy and safety study in dogs, the MR formulation was seen to be distributed as small particles (Figure 12), which is in contrast to the in vitro setup where a
single unit of the formulation was investigated. It is also possible that the observed discrepancy between in vitro and in vivo behavior is a result of a more dense calcium sulfate-based matrix formed by solidification in moisture (in vivo), creating stronger structures than when solidification occurs in vitro.

Figure 10. Simulated concentration–time profiles for 2-HOF following a single intraprostatic dose of the depot formulation (720 mg (A), 1560 mg (B), 2500 mg (C), and 3500 mg (D)) and repeated oral 250 mg doses of flutamide TID. The blue lines represent average plasma concentrations after oral administration and the green lines represent plasma concentrations after administration of the intraprostatic depot formulation. The red lines show the concentrations in prostate tissue (PT) compartments PT1 (dots), PT2 (squares), PT3 (triangles), and PT4 (diamonds), at mean distances of 1, 3, 5, and 7 mm from the depot formulation, respectively. Solid and dotted lines represent total and unbound 2-HOF concentrations, respectively.

Table 5. Comparison of the Area-Normalized Release Rate Constants, $k/W^{1/3}$, Acquired from the in Vitro, $k_{\text{in vitro}}$, and in Vivo, $k_{\text{in vivo}}$, Analyses Carried out Using the Three-Phase Release Model

<table>
<thead>
<tr>
<th>formulation component</th>
<th>$k_{\text{in vitro}}/k_{\text{in vivo}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>nonporous</td>
<td>0.47</td>
</tr>
<tr>
<td>porous, bound drug</td>
<td>0.20</td>
</tr>
<tr>
<td>porous, unbound drug</td>
<td>0.24</td>
</tr>
</tbody>
</table>

Equation 4.

Figure 11. Simulated plasma concentration–time profile for 2-HOF obtained using release parameters acquired from the in vitro experiments (green line). Individual plasma concentration–time profiles for 2-HOF from the clinical study (connected black squares) and the model fit (red line) using model structure B are also shown. A lin–log scaled insert is included.

Figure 12. Resected prostate gland that was removed 12 weeks after administration of the parenteral MR formulation during a GLP toxicological study in dogs.
air (in vitro). Because the fraction of unbound drug (burst dose) only represented about 3% of the total released dose in vivo, in comparison to 24% in vitro, it appears that the in vivo release of 2-HOF was more than 95% controlled by the two designed release compartments in the MR formulation. The immediately available fraction in the in vivo scenario is hence probably mostly represented by 2-HOF located on the outer surface of the formulation. It is also notable that the amount released as a nondeliberate burst in vivo was lower in this MR parenteral formulation than in other parenteral formulations.23,24 From both efficacy and safety perspectives, the demonstrated IVIVC for the slow release of drug from the dense nonporous part of the MR formulation is very encouraging for future pharmaceutical and clinical development. The sensitivity evaluations of the model (Figure 5) indicated that both designed release components of the formulation were required to reach the targeted local concentration—time profile (a fast onset of action and prolonged 2-HOF exposure over time). The increase in plasma C
\text{max} and the extent of systemic exposure during the first weeks were dominated by the release of 2-HOF from the porous part, whereas the prolonged exposure and terminal half-life were determined by release from the nonporous part. Changes in the CL
\text{IIVC} had a direct effect on the exposure of plasma to 2-HOF, as expected, but not on the terminal half-life. This was because the release rate from the formulation was considerably slower than the rate of blood flow through the prostate gland. The extent of tissue penetration and the concentration gradient of 2-HOF inside the prostate gland were sensitive to the CL
\text{IIVC} values within the tissue and between the tissue and the blood. This is an important consideration, in that these values determine the mean distance that a 2-HOF molecule will diffuse in the tissue before it distributes to a blood vessel. It should be noted that the mass transport of 2-HOF in the PT was modeled by a one-dimensional diffusion approximation. As these calculations were based on several assumptions, both theoretical and physiological, some degree of caution is recommended regarding absolute numbers and concentration levels.

At distances of 3 and 5 mm from the depot formulation, the 2-HOF PT concentrations were predicted to be 1200 times and 36 times higher, respectively, than the free 2-HOF concentrations in plasma. This indicates that substantial accumulation of the API occurs in the PT at a distance of up to 5 mm from the dose unit. It has been shown that there is no (or a minimal) fibrous capsule formed around the formulation (Figure 12) that could potentially restrict drug transport.38 It is expected that local sustained exposure to the active drug will significantly reduce the tumor volume, resulting in good cancer control without the normal high frequency of androgen-related side effects.39,40 The systemic exposure to 2-HOF over the investigated time period, after local administration of this MR formulation, was shown to be approximately 5% of the concentration reached after repeated oral administration.37 This low systemic exposure to 2-HOF is a clear advantage with respect to minimizing the risks of systemic androgen-related adverse effects.

Dissemination of the formulation through the PT wall, according to the theoretical release-distribution model, increase both the volume of the prostate gland exposed to the drug and the total rate of release (of the complete dose). This was shown in the simulations not only as an initial increase in both plasma and prostate concentrations but also as a decrease in the terminal half-life. This implies that the administration procedure per se might have an impact on the overall release rate but not on the local 2-HOF release rate from each depot unit. Further investigation into the dissemination of the formulation throughout the gland is to be carried out in the clinic using a standardized procedure based on imaging guidance; a high probability of sufficient tumor exposure to 2-HOF is expected. The investigation of 2-HOF tissue penetration suggests that the depot should be located as close to the tumor as possible, preferably with some degree of spreading around the tumor area as well. In the clinic, this can be attained by combining diagnostic imaging with TRUS guidance. The distribution investigation assumed that the dissemination of the formulation into the surrounding tissue was completely unaffected by the neighboring depot units. This is a very simplified view of the in vivo situation as the surrounding tissue will also receive 2-HOF from the adjacent units. As a result, the simulated tissue concentration in the dissemination investigation should be regarded as a minimum.

The delivery of 2-HOF to cells in a solid tumor is a dynamic process that is determined by the drug concentration, the duration of treatment, and the general processes involved in drug distribution (i.e., the rate of distribution of the drug through the vascular space, the rate and extent of transport across microvessel walls, the extent of carrier-mediated cellular membrane transport (influx—efflux), and the extent of diffusion through the interstitial space in the tumor tissue). The pharmacological effects of 2-HOF, which have not been included in this semi-PBBP model, will probably also affect its intraprostatic disposition. These effects, as well as clinical aspects such as treatment schedules and pretreatment to induce cell death, would need to be taken into consideration in order to fully investigate the tumor-targeting potential of this MR formulation and to maximize drug delivery to the hard-to-reach tumor cells. This semi-PBBP model and the results of the study presented here provide a basis for future investigations and evaluations.

In conclusion, the semi-PBBP model simulations show that the intraprostatic concentrations of 2-HOF are significantly higher than the systemic plasma concentrations after a single-dose intraprostatic injection of the studied MR formulation and that increased distribution of 2-HOF throughout the gland is possible with a strategic dosage plan. Accumulation of 2-HOF to a concentration at least 40 times the plasma concentration is potentially possible, at a distance of 5 mm in all directions from the depot surface; thus, each discrete unit of the formulation will expose a total PT axial length of 10 mm to the drug throughout the dosage interval. This novel parenteral MR formulation design thus offers potential for good pharmacological effect with a minimum risk of side effects for patients with local prostate cancer.

- **Author Information**

Corresponding Author

H. Lennernäs. E-mail: hans.lennernas@farmaci.uu.se. Telephone: +46 18 471 4317. Fax: +46 18 471 4223. Address: Biopharmaceutical Research Group Department of Pharmacy, Uppsala University, Box 580, SE-751 23 Uppsala, Sweden.

Notes

The authors declare the following competing financial interest(s): Niklas Axn, H. Lennernäs, Bo Lennernäs and Lars-Ake Malmsten have equity interests in LIDDS AB and have acted as consultants for the company.
ABBREVIATIONS

2-HOF, 2-hydroxyflutamide; A, surface area; ADT, androgen deprivation therapy; AIC, Akaike information criteria; API, active pharmaceutical ingredient; Ar, area of mass transport; b, blood compartment; C, concentration; Ccentral, central compartment concentration; CPT, prostatic tissue concentration; Cext, average plasma concentration at steady state; CL, clearance; CLD, average plasma concentration at steady state; CL, clearance; CLD, diffusion clearance; CLDPT, tissue-to-diffusion clearance; CLtime, systemic elimination clearance; D, diffusion constant; \(\mu_{D,C} \), multilayered diffusion coefficient; F, bioavailability; \(f_{M,P} \), fraction of unbound 2-HOF in plasma; IVIVC, in vitro–in vivo correlation; k, release-rate constant; L, diffusion-layer thickness; LC, \(\sim \)MS/MS, liquid chromatography coupled with tandem mass spectrometry; \(\log P \), octanol–water partition coefficient; MR, modified-release; \(M_{MOL} \), molar mass; n, compartment n; np, non-porous/unbound drug; PBBP, physiologically based biopharmaceutical; PC, prostate cancer; PL, distance between compartments; P, plaque; porous/bound drug; Q, rate of blood flow; SRR, sum of squared residuals; TID, three times a day; tot, total; TRUS, transrectal ultrasound; \(\tau \), dosage interval; V, volume of compartment; \(v_{int} \), intestinal absorption rate; \(V_d \), volume of distribution; \(v_{Release} \), rate of drug release from the depot; W, weight of 2-HOF

REFERENCES

